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Abstract—The revolution in Internet-connected devices like
cameras, occupancy detectors and air quality monitors, collec-
tively dubbed as the Internet-of-Things (IoT), is enabling the
realization of smart environments ranging from homes and offices
to campuses and cities. In this paper, we describe our journey
(admittedly still in its early days) towards the realization of a
smart campus in a large University with over 50,000 students;
10,000 staff; and nearly 100 acres of real-estate. We begin
by charting out the vision of the smart campus, focusing on
how IoT technologies can benefit various stakeholders including
students, staff, and estate managers. Our second contribution
outlines a systematic approach to the architecture of a smart-
campus, that horizontally separates the sensing, data storage,
and analytics layers. We show that our approach prevents vertical
lock-in to any IoT vendor, scales to arbitrary number and type
of sensors, and permits analytics across data silos. Lastly, we
describe our pilot IoT deployments pertaining to four use-cases
on our campus, specifically classroom attendance, student study
space usage, parking lot occupancy, and bus-stop wait-times. The
data and preliminary insights obtained from these deployments
provide quantifiable benefits to stakeholders, such as improved
space usage and enhanced user experience.

I. INTRODUCTION

Large university campuses are like mini-cities: they occupy
several acres of land; they contain various spaces and facilities
such as office buildings, lecture halls, libraries, informal study
rooms, retail spaces, car parks, and public transport stops; they
are populated with tens of thousands of people; they host a
dynamic flow of human activities from students and staff to
contractors and general visitors, each with different needs and
profiles; and they are under constant pressure to provide better
services to stakeholders while reducing costs. Thus, operating
a university campus is a complex business.

Recent advances in Internet of Things (IoT) technologies –
connected devices such as cameras, screens, motion detectors,
ambient environmental sensors – coupled with advances in
data analytics tools and platforms, present an opportunity
to transform the campus in new ways, prompting many
Universities world-wide to develop strategies for a “smart-
campus” that not only makes the operation of the campus
more efficient [1], but also improves experience for students
and staff [2]–[4]. Improved efficiency helps Universities climb
up the rankings ladder within tight budgets, while an engaging
campus experience helps them distinguish their offerings from
online education options – both of these are of paramount

importance to Universities in order to attract and retain the
best students and staff from around the globe.

Our first contribution in this paper is to articulate the vision
that provides the impetus for a smart campus. Our views
are informed by discussions with various stakeholders on our
University campus. We engaged with various personnel in
Estate Management to discuss the ability (or lack thereof)
to quantify usage of space assets on campus, specifically
lecture halls, study spaces, and parking spots; we engaged
with teaching and research staff to identify pain points around
meeting room availability and equipment tracking; and we
engaged with students to capture the potential of IoT to assist
with way-finding, social get-together, transport wait-times, and
retail shopping, so as to enhance their campus experience.
Documenting these views helps understand the use-cases that
motivate a smarter campus.

Our second contribution is to develop a smart campus archi-
tecture that is flexible enough to accommodate the diverse use-
cases identified above. It is very important for the architecture
to have minimum tie-in to any specific vendor or platform,
since that can hinder the adoption of new technologies (e.g.
sensing devices or analytics tools), and can result in data silos.
We therefore propose an architecture that has three layers -
the sensing layer allows arbitrary sensors with heterogeneous
power and communications requirements to be incorporated
into the system; the data layer stores the collected sensor
values in an unstructured manner as type-value pairs that are
timed and tagged, so that new sensing data can be included
without any format changes; and lastly the analytics layer
allows arbitrary processing (and visualization) of data by a
plethora of open and proprietary tools and platforms. We
emphasize the need for the data layer to be as platform
agnostic as possible, since it forms the “thin waist” above
and below which the sensors and analytics respectively sit.

Our final contribution is the practical realization of some of
the identified use-cases via pilot deployments in our campus.
We briefly discuss our experiences, highlighting choices we
had to make, challenges we faced, and insights we obtained.
Our pilot deployments confirm our belief that our architec-
ture is robust enough to handle a wide range of use-cases,
while still allowing us to make appropriate trade-off decisions
(power, communications, privacy, etc.) suitable to each use-
case. The insights obtained from our pilot deployments also
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highlight the benefits that IoT-based continuous and automated
data collection brings to decision making in a University
campus, and can be translated to larger smart city-like en-
vironments.

II. SMART CAMPUS VISION

There are three main stakeholders of a smart campus namely
estate management, students, and academic staff. These stake-
holders may have their own expectations from a smart campus.

Estate Management (EM) of universities want to monitor
the real-time utilization of campus-wide facilities: (a) our
university main campus is located on a 38 hectare site in
a city where real-estate is at a premium. With over 50,000
students, the university centrally supports and maintains over
200 classrooms of varying size, ranging from small classroom
of less then 50 seats to large lecture hall that can occupy over
400 students. These spaces facilitate a wide variety of learning
and teaching styles, from traditional lectures to active, blended
and small-group learning. Real-time monitoring of usage of
classrooms will not only provide visibility into actual class
attendance and how the spaces are being utilized, but will also
allow possibility for the university to better allocate classrooms
to match the actual student attendance while minimizing the
risk of attendance exceeding room capacity; (b) we have
two major multi-story parking facilities on our campus. Our
EM issues various types of physical parking permits (i.e.
annual for staff, per-semester for students, weekly/daily for
contractors, and casual for visitors). Real-time sensing and
visualization would enable Estate Management to accurately
quantify parking demands and usage profile thus helping them
offer electronic permits and possibly apply dynamic pricing
models for each type of users; (c) as part of an ongoing devel-
opment of learning environments, our university continues to
heavily invest in different types of spaces including student-
led (informal learning) spaces, experimental and innovation
spaces, and collaborative classrooms, providing students to
study, meet, and collaborate, with an aim to enhance their
learning and life experience on campus. In order to evaluate
the return on investment, IoT technologies can be brought in to
measure occupancy patterns and quantify student experience
in these spaces through measuring various ambient conditions
such as noise level, air quality, and lighting conditions; (d)
Anecdotal evidence indicates that the bus stops around our
university campus get very crowded during certain times on
certain days during session. This not only causes immense
frustration to students, who experience large variations in
wait time depending on time-of-day and day-of-session, but
also creates a challenge for EM in knowing when to re-
quest/schedule extra buses. Having continuous data collected
on the crowd volume and wait times at these bus stops would
thus be highly beneficial.

In our smart campus vision, students and their experience
are always at the core. Student experiences can be enhanced
through various smart services: (a) access to spaces with
an optimum lighting, ventilation, and temperature for col-
laborative group study or social gathering; (b) way-finding
for classrooms and social events inside large and complex
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Fig. 1. System architecture.

buildings since general positioning services (e.g. Google Map)
do not cover indoor spaces on our campus; (c) real-visibility
into available parking spots or access to the best transport
services (e.g. taxi vs. private car sharing vs. public buses)
around the campus; (d) access to real-time estimated wait
times for cafeteria food; and (e) access to real-time availability
of recreational and fitness facilities.

Lastly, our university is increasingly embracing new modes
of education delivery including flipped classrooms, work-
based learning, blended learning, or student-led learning to
enhance students education experience on campus. Having
classrooms and labs instrumented by various IoT devices
which can count room occupancy, detect movement patterns
and measure ambient conditions such as air quality, would
enable academic staff to: (a) quantify students attention and
engagement during classes; (b) measure the effectiveness of
learning delivery and lab resources; and (c) track specialized
portable lab equipments.

III. SYSTEM ARCHITECTURE AND CHALLENGES

In this section, we describe our system architecture built
to accommodate the realization of our smart campus as well
as highlight practical considerations and challenges involved
during the deployment.

A. System architecture

The main purpose of our system architecture is to support
the collection of data generated from a variety of smart sensing
devices and the retrieval of these data for applications to
consume. Our architecture comprises the following elements:
(i) the sensing layer that contains multiple IoT devices. Not
only these devices are used for different purposes, they also
have heterogeneous requirements in terms of power, commu-
nications, and installation; (ii) the data layer which is platform
agnostic and is responsible for storage of data collected
from the sensing layer; and (iii) the analytics layer where
raw sensing data is transformed into insights and actionable
intelligence for applications use, enabling various services
offering in a smart campus.

Fig. 1 shows a high-level system architecture representing
the flow of data from the sensors in the sensing layer (on
the left) to the applications in the analytics layer (on the
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Fig. 2. Attendance pattern of three anonymized courses.

right). The sensors first communicate with a corresponding
message broker where sensing data from a variety of format
is unified into a common format accepted by the database
(i.e. type-value pair that is timed and tagged). Each sensing
record comprises of three main fields namely “sensor iden-
tifier”, “measurement” and “time-stamp”. The measurement
field is a JSON array of elements, providing flexibility for
different types of sensors to embed various metrics each as a
separate key/value pair. For example, {"temperature":20,
"humidity":25, "C02":24} is a the measurement of an air
quality sensor. This unified data is then transferred to our raw
sensor database via a HTTP POST API (i.e. RESTful).

The raw sensor data is next fed to another processing engine
to get first cleaned (for example any outliers in data will be
removed in this stage) and then enriched with external datasets
such as class-timetable, enrollment list, weather report, or real-
time public transport schedule. The resulting output of these
processes will be stored in a “derived database” (e.g. the total
number of people in a classroom), ready to be consumed
directly by various applications in the analytics layer.

B. Practical Considerations

This subsection describes key practical considerations one
may need to consider for the realization of smart campus.
Several methods and technologies are available to measure
various parameters, from counts of people and vehicles to
indoor and outdoor environmental metrics. Each method has
its own pros and cons in various aspects such as cost,
power (AC or battery), Comms (WiFi, LoRaWAN, 3G/4G,
or Ethernet), calibration, ease of deployment and operations,
privacy, security, accuracy, sustainability and scalability [5],
and more importantly interoperability and cloud computing
integration [6]. Sensors requirements for power and Comms
become crucial when it comes to deployment of IoTs for each
use-case. For example, AC power sockets or Ethernet ports
may not be easily available for outdoor installations.

For our campus, we investigated several commercial sen-
sors and straightaway eliminated those that send data to the
vendor’s cloud servers, since we wanted to: (a) keep the
data entirely on-premises and not risk it leaving our campus
infrastructure; and (b) not be beholden to a vendor to access
our own data, hence freeing us from ongoing service costs. In
other words, we wanted a “sale” model of the device so we

Fig. 3. Heatmap of classrooms occupancy across campus.

could have unfettered access to our data without any ongoing
“service” fees. Further, this model allows us to integrate data
into a centralized repository to facilitate better analytics across
the many data feeds we have on campus.

The wide variety of smart sensors creates the next challenge
namely heterogeneity of generated data sources and formats.
Multiple data sources from different types of sensors produce
different formats of data leading to inconsistency in data
structure, for instance some sensors produce data in a csv
format while the other in a JSON format, some off-the-
shelf sensor posts data to their own proprietary database with
a specific data structure, creating further diversity in data
characteristics. This poses a challenge in the data collection
process as the data will need to be unified through message
brokers into the same structure prior to being stored into our
centralized database.

Furthermore, the collected data from IoT devices may
contain private or sensitive information (e.g. cars license pate
captured by License-Plate-Recognition cameras, or individu-
als’ enterprise id captured by campus WiFi logs) that can not
be shared across different entities. This creates a challenge in
design of data accessibility.

IV. PILOT EXECUTION OF SMART CAMPUS USE-CASES

To achieve our smart campus vision mentioned in section
II, we execute four use cases of different domains as a
pilot execution of our smart campus initiative. We obtained
appropriate ethics clearances for this study (UNSW Human
Research Ethics Advisory Panel approval numbers: HC17140,
HC171044, and HC180359). For each use case, we outline
our motivations, implementation methods, and applications of
smart services enabled by IoT technologies.

A. Classroom Occupancy

1) Motivation: An increase in availability and accessibility
of online courses and video recordings has led class attendance
to well below the enrollment number. Furthermore, due to a
lack of occupancy monitoring, the university has no visibility
into how classrooms are being utilized. The result is a wastage
of classroom spaces which is one of the university’s most
expensive assets especially in the area where land price is
at a premium. Providing visibility into actual class attendance
is essential to inform better decision for classroom allocation,
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Fig. 4. Real-time monitoring of occupancy and air quality measures for
informal learning space.

TABLE I
SENSORS COMPARISON.

Installation Calibration Power Comms Accuracy Cost Privacy
Beam counter easy easy battery wireless high medium 3

Thermal camera hard medium/hard AC power wireless low high 3

HPD camera medium hard PoE Ethernet medium medium 3

PIR sensor hard easy AC power wireless binary medium 3

WiFi existing existing existing existing low 0 7

where expected attendance can be taken into account during
the allocation process in order to achieve a higher utilization
of resources.

2) Methods and Deployment: As note in Section III-B,
we evaluated several sensing devices including beam counter
[7], people counting camera [8], overhead thermal sensor [9],
and WiFi data, along the different dimensions including cost,
ease of installation, power and communication requirement,
accuracy, and privacy as shown in Table I. We therefore
decided on a larger-scale deployment of the beam counter,
based on its relatively low cost, ease of installation, acceptable
accuracy, and good protection of privacy. The deployment has
been completed across 9 lecture halls of varying sizes ranging
from 35-seat room to 497-seat lecture theater.

3) Applications: We developed a web application tool to
provide an intuitive interface into the visualization of real-
time and historical class attendance. The tool allows us to see
occupancy pattern for each of the deployed classroom, where
large gaps between the actual attendance and the enrollment
number are often observed. We are able to quantify attendance
rate which in general, is seen to vary widely between 10-90%
across courses. Fig. 2 shows an example of attendance patterns
for 3 courses across the 12 weeks of a semester. The plot
allows us to spot interesting trends such as a general decline
of attendance over weeks (blue line), class cancellation (orange
line), and mid-session test (green line) where a spike can be
seen during the middle of the semester. Our tool also provides
visualization of the utilization “heatmap” of the classrooms on
a chosen day (Fig. 3), where bright yellow cells represent high
utilization of classroom spaces while dark blue cells represent
poor utilization of classrooms.

We observe that course attendance varies over the weeks
which leads to under-utilization of classrooms. This presents
an opportunity for campus managers to employ a dynamic
allocation scheme to save cost. A practical implementation
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Fig. 5. Temporal variation of usage for various parts of informal learning
space.

could use historical attendance data (say from the previous
year) to develop a dynamic schedule for a course using an
optimization algorithm, while leaving some margin for error
arising from the use of retrospective rather than prospective
attendance counts.

B. Occupancy of Informal Learning Space

1) Motivation: Informal learning spaces are described as
non-discipline specific spaces used by students and staff for
self directed learning activities which can be within and
outside library spaces [10]. These spaces have a major impact
on students engagement outside the classroom by helping the
creation of a shared, supportive learning community [11].
However, the university does not have any insight into how
these spaces are used or what are students’ experience toward
the spaces, thus unable to quantify the effectiveness of these
spaces being constructed across the university.

2) Methods and Deployment: As in Section IV-A2, people
counting methods are necessary to quantify occupancy of
these spaces. The approach adopted therein, however cannot
be replicated for informal spaces as they are not completely
enclosed – no doorways. For informal learning spaces, we
used human presence detection camera which has a built-in
image processing unit to count the number of people present
within a configurable area of interest [8]. The camera required
a special PoE switch to provide Ethernet for both power and
communications and the installation of the camera can be
done by a certified tradesman as it needs to be mounted on
the ceiling. In terms of privacy, the camera employs an on-
board processing and does not store any image or personal
information, hence it can be deemed to preserve privacy.

Students experience can be measured using traditional
methods such as conducting a survey or interviews – these
methods require significant human resources and the data
will be limited to specific period of time when the survey
is being conducted. Researchers [10] have identified a number
of environmental factors such as noise level, CO2 measure,
and ambient light that indicate students preference to learning
spaces. Therefore, we use IoT technology to continuously
measure various environmental factors to infer experience of
occupants.
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3) Applications: We have deployed three units of people
counting cameras in a large informal learning space close to
our campus library that is typically used by students. Each
camera is configured to monitor a non-overlapping zone of
interest. Fig. 4 shows the time-trace for the aggregate number
of people present at the space along with the temperature
and humidity of the environment. This allows the EM to
quantify the usage of the space as well as to monitor if
the environmental condition is within the comfort zone of
occupants.

Fig. 5 shows the time trace of people count for each zone
(in the space). It is seen that the “microwave area” (shown by
orange bars) is utilized more compared to the “centre area” and
“end of hall”, highlighting the facility of interest for students
in this space.

C. Car park monitoring

1) Motivation: A lack of real-time visibility into campus
parking space usage and availability has led many students
and staff members to spend a frustrating amount of time
searching for a parking space. This not only causes poor
user experience but also worsen traffic congestion around the
campus. In addition, our university EM needs to have access
to accurately quantified data on how campus car parks are
utilized in order to make informed decisions on pricing policy
or shared-transport space renting.

2) Methods and Deployment: There are various technolo-
gies used for parking management system worldwide includ-
ing parking guidance information system (PGIS) where users
are informed on the availability and location of parking spaces;
smart payment system; E-parking which provides users with
reservation services; and automated parking [12]. Due to
budget constraints, we decided not to employ parking disks
(affixed to parking bays that detect presence/absence of a
car) for occupancy monitoring of hundreds of parking bays
– disks would be a preferred solution for usage monitoring
of a handful of bays dedicated to car-sharing vehicles. One
may choose to deploy RFID tags (incorporated into parking
permits) that can be scanned whenever a car enters/exits the
parking lot. This sensing method was not appropriate for
our case since it required changes into parking permits that
get renewed annually for staff. For our pilot deployment, we
installed 2 units of License Plate Recognition (LPR) cameras
at the entrance and exit to one of our campus car parks.
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Fig. 7. CDF of stay duration of cars in carpark during weekday and weekend.

3) Applications: Our preliminary results allow us to gain
insights into real-time usage and availability of the car park,
Fig. 6 shows a daily usage profile of our campus car park.
Unsurprisingly, the car park is fairly utilized between 7:30am
and 6pm during staff working hours. This real-time usage
profile enables the EM to plan for the number of bays they
can rent to car sharing service providers.

Fig. 7 shows a cumulative density function (CDF) plot for
stay duration of cars at the car park, allowing us to quantify
the parking behavior of users. We can see that over 90% of
users are using the car park for less than 12 hours at a time
while a minor fraction (i.e. 2%) of cars stay longer than a day.

D. Passenger queue at bus stops
1) Motivation: Bus stops around campus, especially those

serving express buses to the central station, can get very
crowded during certain times. Currently there is no data
available to inform passengers on how long they are expected
to wait once they join the queue at a bus stop. This not only
causes immense frustration to students who experience large
variations in wait time, but also creates challenges for the
university EM and the transport authority in knowing when
to schedule extra buses.

2) Methods and Deployment: One of the methods we have
started using to measure passenger queue at the bus stop is to
install miniature ultrasonic sensors along the fence bordering
the queue, in the direction in which the queue grows. The sen-
sors measure the distance between itself and the closest object,
allowing us to determine whether someone is in front of the
fence and thus helping us to infer the estimated length of the
queue in real-time. Since these sensors will be located outdoor
where no power and communications point is available, the
device has to be battery-powered and needs to communicate
wirelessly. We chose LoRaWAN [13] as the communications
method due to its low power requirement which leads to a long
battery life, and its wide range communication as the bus stop
of our interest is located in an area where the campus WiFi
signal is not available.

To complement the data collected from the sensors, we will
also receive a CSV file of daily WiFi connection logs for the
access points located close to the bus stop of interest from
our University IT department. Analysis of this data will be
performed to determine if the connected user is joining the
passenger queue in order to approximate the demands at the
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bus stop. Fig. 8 shows an example of WiFi connections count
from 2 access points (green and orange lines) close to the bus
stop during a 2-hour period – the sum of these two counts
(blue line) is an estimate for the number of people waiting at
the bus stop.

Additionally, we will employ a method that involves users
contributing data. In this method, we will install placards with
unique QR codes regularly spaced along the bus-stop queue
(possibly co-located with the sensors mentioned above), as
shown in Fig. 9. A person joining the queue can (if they wish
to volunteer data to this project) scan the QR code nearest them
using their mobile phone. This will trigger two actions: (a) they
will be directed to our website, and our server will assign a
“cookie” (unique id) to their phone; and (b) we will record in
our database the position of the cookie (individual) in terms
of distance (meters) from the head of the queue (based on the
known location of the QR code placard), along with the time-
stamp. As users keep advancing in queue and scan subsequent
QR codes placed along the queue, our algorithms will be able
to estimate the rate at which the queue is moving, and wait-
times incurred by users at the bus-stop. In order to incentivize
students to contribute their data on queue progression and
wait-times by scanning the QR codes at the bus-stop, we intend
to give them “points” that are accumulated with each scan, and
these points can be redeemed for a cash/voucher reward.

3) Applications: Data associated with crowding at bus stops
collected from the methods mentioned above can be used to
derive estimated waiting time at bus stops across campus.
Availability of this information in real-time allows users to
make informed decisions about their departure time and which
bus stop they will be heading to, based not only on the existing
real-time bus schedule but also the expected wait time incurred
at each bus stop [14]. The data will also encourage peak
spreading of public transport services where demand for travel
can be broaden over time and space, for example if there is a
long queue of passengers at a certain bus stop, a fraction of
those passengers can be encouraged to walk to the next nearest
bus stop or take another route, thus reducing the crowd and
waiting time for all passengers. Furthermore, real-time data
on actual transport service demand will allow a development
of new methods to dynamically optimize bus schedules based

Fig. 9. Placards with unique QR codes regularly spaced along the bus-stop
queue.

on bus stop crowding information, minimizing the mismatch
between demand and supply.

V. CONCLUSION

In this paper, we have outlined our journey towards the
realization of smart campus in a large university. We engaged
with various stakeholders to articulate the vision of a smart
campus using IoT technologies. We then developed our three-
layer system architecture comprising separate layers of sens-
ing, data, and analytics that prevents vertical lock-in and scales
easily. Lastly, we executed four pilot use-cases in our campus
and revealed insights we obtained, highlighting the benefits
that IoT-based continuous and automated data collection brings
to decision making in a University campus.
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